PHYS 10352 Part I: Classical Thermodynamics

Anna Scaife

Department of Physics & Astronomy, University of Manchester

March 8, 2023

WEEK 6: PHASE CHANGES

1	Recap	22
2	Phase	e Equilibrium
	2.1	Clausius-Clapeyron Equation
	2.2	Liquid-Gas Indicator Diagram
	2.3	Classification of Phase Transitions
3	Real Gases	
	3.1	Van der Waals Equation
	3.2	Solutions to the VdW Equation
4	Summ	nary

RECAP

Starting from the <u>fundamental thermodynamic relation</u> we can derive the thermodynamic potentials:

F(T, V) = E - TS

$$G(T,P) = E - TS + PV$$

H(S,P) = E + PV

- Helmholtz free energy, F, is decreasing for spontaneous processes at constant temperature and volume.
- Gibbs free energy, G, determines the direction of spontaneous processes at constant pressure and temperature.
- ▶ The <u>second derivatives</u> of the thermodynamic potentials give us the Maxwell relations:

$$\left(\frac{\partial P}{\partial S}\right)_{V} = -\left(\frac{\partial T}{\partial V}\right)_{S} \qquad \qquad \left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial P}{\partial T}\right)_{V} \\ -\left(\frac{\partial S}{\partial P}\right)_{T} = \left(\frac{\partial V}{\partial T}\right)_{P} \qquad \qquad \left(\frac{\partial V}{\partial S}\right)_{P} = \left(\frac{\partial T}{\partial P}\right)_{S}$$

Liquid-Gas coexistence

$$P = 1 \text{ atm.}$$
$$T = 273.15 \text{ K}$$

Solid-Liquid coexistence

We can find the conditions for phase equilibrium by considering the total, isolated system to be composed of two open systems:

$$S(E, V, N) = S_1(E_1, V_1, N_1) + S_2(E_2, V_2, N_2),$$

As the overall system is isolated, it reaches equilibrium when entropy is maximised; dS = 0, i.e.:

$$dS = \left(\frac{\partial S}{\partial E}\right)_{V,N} dE + \left(\frac{\partial S}{\partial V}\right)_{E,N} dV + \left(\frac{\partial S}{\partial N}\right)_{E,V} dN = 0.$$

- $T_1 = T_2$, no heat flow between the systems.
- $P_1 = P_2$, the systems are at mechanical equilibrium.
- $\mu_1 = \mu_2$, there is no preference to be in one state over the other.

Phase Equilibrium

PHASE EQUILIBRIUM CLAUSIUS-CLAPEYRON EQUATION

The Clausius-Clapeyron relation relates different points of phase coexistence.

(For instance, how the boiling point of water changes with pressure, e.g. at different altitudes.)

$$\frac{dP}{dT} = \frac{\Delta S^m}{\Delta V^m} = \frac{\Delta H^m}{T \Delta V^m}$$

where S^m and V^m refer the to entropy and volume per mole, respectively, and H^m is the enthalpy per mole, also referred to as *the latent heat of transformation*.

PHASE EQUILIBRIUM LIQUID-GAS INDICATOR DIAGRAM

CLASSIFICATION OF PHASE TRANSITIONS

REAL GASES VAN DER WAALS EQUATION

$$P = \frac{nRT}{V - nb} - a\frac{n^2}{V^2}$$

REAL GASES Solutions to the VDW Equation

The Van der Waals equation is cubic for *V*:

$$PV^{2}(V - nb) - nRTV^{2} + an^{2}(V - nb) = 0,$$

therefore there are either one real root or three. We find this is dependent on the temperature:

For T > T_C = ^{8a}/_{27bR}, there is only one solution for V where P decreases with V.
For T = T_C, the isotherm has a point of inflexion where

$$\left(\frac{\partial P}{\partial V}\right)_{T_{C}} = \left(\frac{\partial^{2} P}{\partial V^{2}}\right)_{T_{C}} = 0 \tag{1}$$

at $V_C = 3nb$.

▶ For $T < T_C$ there are three solutions, however one is unphysical where $\left(\frac{\partial P}{\partial V}\right)_{T_C} > 0$.

REAL GASES Solutions to the VdW Equation

SUMMARY

Points of phase equilibrium, i.e. co-existence, are described by the Clausius-Clapeyron Equation:

$$\frac{dP}{dT} = \frac{\Delta S^m}{\Delta V^m} = \frac{\Delta H^m}{T\Delta V^m}$$

- The **triple point** describes the state at which three phases can co-exist.
- ▶ The **critical point** described the point beyond which liquid and gas cannot be distinguished.
- The equation of state for real gases is approximated by the Van der Waals Equation:

$$P = \frac{nRT}{V - nb} - a\frac{n^2}{V^2}$$

• The VdW equation can be solved to find the state variables (T_C, V_C, P_C) at the triple point.