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RECAP

▶ Heat engines produce work from heat using a cycle where ∆E =
∮

dE = 0.
▶ The efficiency of an engine is defined as η = W

QH
= QH−QC

QH
< 1.

▶ The “efficiency” of a refrigerator is η = QC
W .

▶ The second law of thermodynamics can be expressed in multiple ways:
▶ the Kelvin-Planck formulation of the 2nd law says that it’s impossible to convert heat to work

perfectly;
▶ the Clausius formulation of the 2nd law says that it’s impossible to construct a process which

transfers heat from a colder to a hotter body without doing any work.
▶ Carnot’s theorem: a reversible engine is the most efficient, and that all reversible engines

operating between two heat baths have the same efficiency.
▶ The Carnot efficiency is given by:

ηC = 1 − TC

TH
.
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ENTROPY
CLAUSIUS’ INEQUALITY

The Clausius inequality states that if a system is taken over a cycle then:

∮
d̄Q
T

≤ 0

where the system has absorbed infinitesimal amounts of heat, d̄Q, from various reservoirs at
varying temperatures, T, throughout the cycle.

Original German: https://archive.org/details/sim_annalen-der-physik_1865_125_7/mode/2up

Translation: https://web.lemoyne.edu/~giunta/Clausius1865.pdf
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ENTROPY
CLAUSIUS’ INEQUALITY

Ci

d̄Qi

d̄Q0

d̄Wi

T0

Ti

⇒
over
cycle

Q =
∮ T0

Ti
d̄Qi

W =
∮

d̄Wi

T0

Appears to violate Kelvin-Planck statement...
unless:∮

d̄Wi ≤ 0 and ∴ T0
∮ d̄Qi

Ti
≤ 0
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ENTROPY
CLAUSIUS’ INEQUALITY

dS =
d̄Q
T

Clausius named the quantity, S, ἡ τροπή (entropy), or "transformation".

His 1865 paper had two conclusions:
1. The energy of the Universe is constant.
2. The entropy of the Universe strives towards a maximum.
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ENTROPY
THE DEFINITION OF ENTROPY

A

B1

2

V

P

From the Clausius inequality we know that
d̄Q/T over the full cycle will be zero:∮

1
T

d̄Q =

∫ B

A

1
T

d̄Q︸ ︷︷ ︸
1

+

∫ A

B

1
T

d̄Q︸ ︷︷ ︸
2

,

=

∫ B

A

1
T

d̄Q︸ ︷︷ ︸
1

−
∫ B

A

1
T

d̄Q︸ ︷︷ ︸
2

= 0.

⇒ d̄Q/T is path independent, i.e. it is a function
of state.
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ENTROPY
THE DEFINITION OF ENTROPY

A

B1

2

V

P

From the Clausius inequality we know that
d̄Q/T over the full cycle will be zero:∫ B

A

d̄Q
T

=

∫ O

A

d̄Q
T

+

∫ B

O

d̄Q
T

,

=

∫ B

O

d̄Q
T

−
∫ A

O

d̄Q
T

,

= S(B)− S(A).

⇒ the entropy is a function of the equilibrium
state, i.e.

S(A) =

∫ A

O

d̄Qrev.

T
.

note: the definition of entropy requires a
reversible process

7 / 30



ENTROPY
THE DEFINITION OF ENTROPY

A

B

reversible

irreversible

V

P

Applying the Clausius inequality we can write:∫ B

A

d̄Qirrev.

T
+

∫ A

B

d̄Qrev.

T
≤ 0.

which means:∫ B

A

d̄Qrev.

T
≥

∫ B

A

d̄Qirrev.

T

and therefore:

S(B)− S(A) ≥
∫ B

A

d̄Qirrev.

T︸ ︷︷ ︸
note: this is not entropy
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REVERSIBLE VS. IRREVERSIBLE2

Consider a free expansion1 vs. a reversible isothermal expansion with the same initial and final
equilibrium states.

We can write:
d̄Qirrev. + d̄Wirrev. = d̄Qrev. + d̄Wrev..

In the free expansion the work done is zero, whilst it is negative in the isothermal expansion:

d̄Wirrev. > d̄Wrev..

There is no heat exchange in the free expansion, whilst heat is supplied from the reservoir in the
isothermal expansion:

d̄Qirrev. < d̄Qrev.

This is consistent with the relation found on the previous slide.
1which is irreversible because it is not quasistatic
2Section 2.1.3 in the notes
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ENTROPY
WORKED EXAMPLE - 2018/19 EXAM

1(b) An impermeable barrier confines n moles of an ideal gas to one third of the volume of an
insulated container. The barrier is removed without doing any work. By considering a reversible
process with the same initial and final states, calculate the change in entropy of the gas.
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ENTROPY
WORKED EXAMPLE - 2018/19 EXAM

1(b) An impermeable barrier confines n moles of an ideal gas to one third of the volume of an
insulated container. The barrier is removed without doing any work. By considering a reversible
process with the same initial and final states, calculate the change in entropy of the gas.

This is a free expansion, which is an irreversible process.

Entropy changes are defined only for reversible processes. However, entropy is a function of state
and therefore we can calculate the entropy change for an equivalent reversible process.

In this free expansion no work is done, i.e. d̄W = 0, and no heat is exchanged, i.e. d̄Q = 0 (we are
told that the container is thermally insulated). Therefore:

dE = d̄Q + d̄W = 0 ⇒ dT = 0 because E ≡ E(T)

So to reach the same final state, we can consider an equivalent reversible isothermal expansion. In
this case:

dE = d̄Q + d̄W = 0 ⇒ d̄Q = −d̄W =
nRT

V
dV

and therefore

dS =
d̄Q
T

⇒ ∆S =

∫ 3V0

V0

nR
V

dV = nR ln 3
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ENTROPY
ENTROPY & THE 2ND LAW

A

B

reversible

irreversible

V

P

What happens if A → B is thermally isolated?

In that case, d̄Qirrev. = 0 and:

S(B)− S(A) ≥
∫ B

A

d̄Qirrev.

T
≥ 0

The entropy of an isolated system can only (i)
increase or (ii) stay the same.

(i) if an isolated system is not at equilibrium, its
entropy must increase further;
(ii) at equilibrium functions of state do not
change, i.e. dS = 0, ∴ equilibrium = maximum
entropy.

An isolated system at equilibrium must be in
the state of maximum entropy.
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ENTROPY
WORKED EXAMPLE - 2018/19 EXAM

2(d) The second law of thermodynamics can be stated in the form: The entropy of a thermally
isolated system cannot decrease. Use the second law to show that the efficiency of an engine that
operates between temperatures TH and TC must be less than or equal to the Carnot efficiency:

ηC = 1 − TC

TH
.
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ENTROPY
WORKED EXAMPLE - 2018/19 EXAM

2(d) The second law of thermodynamics can be stated in the form: The entropy of a thermally
isolated system cannot decrease. Use the second law to show that the efficiency of an engine that
operates between temperatures TH and TC must be less than or equal to the Carnot efficiency:

ηC = 1 − TC

TH
.

For an engine operating between two temperatures, the entropy of the heat baths defining those
temperatures must change over the course of the cycle. The entropy of the hot bath decreases and
the entropy of the cold bath increases: QH = TH∆SH and QC = TC∆SC.

The efficiency of the engine is defined as:

η =
W
QH

= 1 − QC

QH
= 1 − TC∆SC

TH∆SH

The second law of thermodynamics requires ∆Stot ≥ 0 then ∆SC ≥ ∆SH and consequently:

η ≤ 1 − TC

TH
.
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ENTROPY
ENTROPY AND HEAT CAPACITY

For an infinitesimal change, we have

dS =
d̄Qrev.

T
.

If this change is at constant X (e.g. X = P or V)

d̄Qrev. = CXdT ⇒ CXdT = TdS.

Therefore,

CV = T
(
∂S
∂T

)
V

CP = T
(
∂S
∂T

)
P
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ENTROPY
WORKED EXAMPLE - 2021/22 EXAM

3(e) A rigid vessel contains 5 moles of ideal diatomic gas at a temperature of 270 K. The vessel is
placed in thermal contact with a large heat bath at 330 K and is left to reach equilibrium. By how
much does the entropy of the Universe change in this process?
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ENTROPY
WORKED EXAMPLE - 2021/22 EXAM

3(e) A rigid vessel contains 5 moles of ideal diatomic gas at a temperature of 270 K. The vessel is
placed in thermal contact with a large heat bath at 330 K and is left to reach equilibrium. By how
much does the entropy of the Universe change in this process?

The change in entropy of the Universe is given by:

∆Suniverse = ∆Sgas +∆Sbath

Gas: Heat bath:

∆Sgas = CV

∫ Tf

Ti

dT
T

=
5
2

nR · ln
(

Tf

Ti

) Q = Tf∆Sbath = −CV∆T = −CV(Tf − Ti)

∴ ∆Sbath = −CV
(Tf − Ti)

Tf
= −5

2
nR

(Tf − Ti)

Tf

⇒ ∆Suniverse =
5
2

nR
[
ln

(
Tf

Ti

)
−

(Tf − Ti)

Tf

]
= 1.96 J/K > 0
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ENTROPY
THE CARNOT CYCLE REVISITED

SA SB

TC

TH
1 Isothermal

2
A

di
ab

at
ic

3 Isothermal

4
A

di
ab

at
ic

S

T

Adiabatic changes have d̄Q = 0.

Since
dS =

d̄Q
T

then adiabatic changes are also isentropic, i.e.
dS = 0.

Therefore the only entropy changes are in the
isothermal steps.

Challenge: starting from the ideal gas law, can you demonstrate that adiabatic changes are isentropic? Hint: embrace the natural logarithm!
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ENTROPY
THE CARNOT CYCLE REVISITED

QC

QH

W = QH − QC

TC

TH

For a Carnot cycle operating between a heat
source with constant temperature TH and a heat
sink with constant temperature TC, we know that
the efficiency will be

ηC = 1 − TC

TH
.

So, for example, if we have a Carnot cycle
operating between two infinite temperature
reservoirs with TH = 100◦C and TC = 10◦C, then
the efficiency will be

ηC = 1 − 283
373

= 0.24,

i.e. for every 1 J of heat, QH, that is input from the
heat source, 0.24 J of work will be produced.
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ENTROPY
THE CARNOT CYCLE REVISITED

QC

QH

W = QH − QC

TC

TH

What happens in the case where one of the
temperature reservoirs is finite?

For example, a Carnot cycle where the heat source
is a finite volume of water at an initial
temperature of 100◦C, and the heat sink is a lake
with constant temperature of 10◦C.

In this case the temperature of the hot reservoir
will gradually decrease until it reaches a final
temperature of Tf = TC.

What is the maximum amount of work that can
be extracted from such a cycle?

20 / 30



ENTROPY
THE CARNOT CYCLE REVISITED

m = 106 kg

QC

QH

W = QH − QC

TC

TH

The maximum work that can be extracted is

W = QH − QC

and we know that enough heat is extracted from
the hot reservoir to cause a change in temperature
of ∆T = 373 − 283 = 90 K

∴ QH = m · c ·∆T = 37.8 × 1010 J.

But what is QC? The heat capacity of a fixed
temperature reservoir is ∞...

Specific heat capacity of water is 4.2 kJ K−1 kg−1
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ENTROPY
THE CARNOT CYCLE REVISITED

m = 106 kg

QC

QH

W = QH − QC

TC

TH

To find QC, we use the 2nd law of
thermodynamics:

∆S = ∆SH +∆SC ≥ 0.

Since TC is constant, ∆SC = QC/TC, and

∆SH =

∫
d̄Q
T

=

∫ Tf

TH

m · c · dT
T

= m · c · ln
(

Tf

TH

)
Taking the limiting case where ∆S = 0, and
replacing Tf = TC, we find

QC = m · c · TC ln

(
TC

TH

)
= −32.8 × 1010 J

Therefore, the maximum work extracted is

W = QH − QC = (37.8 − 32.8)× 1010 = 5 × 1010 J

Specific heat capacity of water is 4.2 kJ K−1 kg−1
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ENTROPY
THE CARNOT CYCLE REVISITED

m = 106 kg

m = 106 kg

QC

QH

W = QH − QC

TC

TH

What happens in the case where both of the
temperature reservoirs are finite?

For example, a Carnot cycle where the heat source
is a finite volume of water at an initial
temperature of 100◦C, and the heat sink is a finite
volume of water at an initial temperature of 10◦C.

In this case the temperature of the hot reservoir
will gradually decrease and the temperature of the
cold reservoir will increase until they reach some
intermediate final temperature, Tf .

What is the maximum amount of work that can
be extracted from such a cycle?
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ENTROPY
THE CARNOT CYCLE REVISITED

m = 106 kg

m = 106 kg

QC

QH

W = QH − QC

TC

TH

Just as in the previous case, the maximum work
that can be extracted is

W = QH − QC

and here we can write

QH = m · c · (TH − Tf )

QC = m · c · (Tf − TC)

So the question becomes: What is Tf ?
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ENTROPY
THE CARNOT CYCLE REVISITED

m = 106 kg

m = 106 kg

QC

QH

W = QH − QC

TC

TH

Using the 2nd law of thermodynamics:

∆S = ∆SH +∆SC ≥ 0

In this case,

∆S =

∫
H

d̄Q
T

+

∫
C

d̄Q
T

= m · c · ln
(

Tf

TH

)
+ m · c · ln

(
Tf

TC

)
Taking the limiting case where ∆S = 0, we find
that

Tf =
√

TcTH = 325 K

and consequently

W = QH − QC = 2.5 × 1010 J
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ENTROPY
ENTROPY AND THE ARROW OF TIME (NON-EXAMINABLE)

The entropy of an isolated system can only increase or stay the same.

"Let us draw an arrow arbitrarily. If as we follow the arrow we find more and more of the
random element in the state of the world, then the arrow is pointing towards the future; if

the random element decreases the arrow points towards the past. That is the only
distinction known to physics.

This follows at once if our fundamental contention is admitted that the introduction of
randomness is the only thing which cannot be undone. I shall use the phrase time’s arrow

to express this one-way property of time which has no analogue in space".

- Arthur Eddington, 1928

https://calteches.library.caltech.edu/4326/1/Time.pdf
https://academic.oup.com/astrogeo/article/46/1/1.26/253257
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THE FUNDAMENTAL THERMODYNAMIC RELATION

From the 1st law:
dE = d̄Qrev. + d̄Wrev.,

dE = T dS + d̄Wrev

the fundamental thermodynamic relation

For a fluid, we can update this to:
dE = TdS − PdV

Therefore, we can think of E ≡ E(S,V) and write

dE =

(
∂E
∂S

)
V

dS +

(
∂E
∂V

)
S

dV

where : T =

(
∂E
∂S

)
V

and P = −
(
∂E
∂V

)
S
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THE FUNDAMENTAL THERMODYNAMIC RELATION
WORKED EXAMPLE - ENTROPY CHANGE

Starting from the fundamental thermodynamic relation, show that a general expression for the
entropy change of one mole of an ideal gas can be written as

∆S = CV

[
ln

(
Tf

Ti

)
+ (γ − 1) ln

(
Vf

Vi

)]
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THE FUNDAMENTAL THERMODYNAMIC RELATION
WORKED EXAMPLE - ENTROPY CHANGE

Starting from the fundamental thermodynamic relation, show that a general expression for the
entropy change of one mole of an ideal gas can be written as

∆S = CV

[
ln

(
Tf

Ti

)
+ (γ − 1) ln

(
Vf

Vi

)]

dE = TdS − PdV ⇒ TdS = CVdT + PdV where dE = CVdT for an ideal gas

∴ dS =
CV

T
dT +

P
T

dV =
CV

T
dT +

R
V

dV using the ideal gas law

∆S =

∫ Tf

Ti

CV

T
dT +

∫ Vf

Vi

R
V

dV = CV ln

(
Tf

Ti

)
+ R ln

(
Vf

Vi

)
Using CP = CV + nR and CP/CV = γ to find nR = CV(γ − 1):

∆S = CV

[
ln

(
Tf

Ti

)
+ (γ − 1) ln

(
Vf

Vi

)]
as required.
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SUMMARY

▶ The Clausius inequality states that over a cycle:
∮ d̄Q

T ≤ 0

▶ The quantity d̄Q
T is path independent, i.e. it is a function of state.

▶ We define this function of state as the entropy, S, where

∆S = S(B)− S(A) =

∫ B

A

d̄Qrev

T
≥ 0

▶ Entropy is defined in terms of reversible processes.
▶ The entropy of an isolated system can only increase or stay the same.
▶ An isolated system at equilibrium must be in a state of maximum entropy.
▶ We can define heat capacity in terms of entropy.
▶ From the first law, we can use entropy to define the fundamental thermodynamic relation:

dE = T dS + d̄Wrev
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